
JOURNAL OF COMPUTATIONAL PHYSICS 35, 284-289 (1980) 

Note 

On the Use of Preconditioned Conjugate Gradient Methods for Red-Black 
Ordered Five-Point Difference Schemes 

1. INTRODUCTION 

The red-black (or checkerboard) ordering has certain advantages with regard to 
arithmetic and demand of storage, in particular for large, out-of-core systems of 
linear equations corresponding to the five-point difference approximation of the 
Poisson equation. This is so because on an m x n grid, m < n, one may reduce the 
problem to a, possibly in-core, system of half the number of unknowns, without in- 
creasing the bandwidth, 2m + 1. Only this latter system has to be factorized. We 
refer to, for example, McDonald and Trimble [l] for this and a similar ordering, 
wherein other relevant references also may be found. 

In particular, when m is large, it may be of interest to use an incomplete factoriza- 
tion of this reduced system and to solve it by iterative refinement, We show that this 
is possible and that the number of iterations grow as 0(/z-+‘), as the average mesh 
size h + 0, if a conjugate gradient method is used for the iterative refinements. (We 
assume that we subdivide all mesh sides in the same fraction given a coarse mesh to 
start with.) 

For elongated grids, where m is small relative to II, the incomplete factorization is 
relatively more accurate than for the case where m = n. Hence fewer iterations are 
needed and, as we will see, the method is still competitive with a full factorization 
method. For a certain incomplete factorization method used below the demand of 
storage is about 7.5mn. 

2. INCOMPLETE FACTORIZATION OF RED-BLACK ORDERED DIFFERENCE EQUATIONS 

Given a grid Qh, consisting of rectangular elements, we number the points as on a 
checkerboard (see Fig. 1). For simplicity we describe the ordering on a rectangular 
m x n grid, where m < n. The matrix, corresponding to the difference operator of 
the Laplacian or of the more general operator 

& (u ;) + 6 (b $), a 3 a, > 0, b 3 6, > 0, 

then takes the form, 
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FIG. 1. The red-black ordering for m = 5, n = 6. 

where D, and D, are positive diagonal matrices. Since we may multiply A by 

D;l” 0 
0 D;W 1 

from the left and from the right, making corresponding transformations of the 
unknown and source vectors, we may, without limitation, assume that D, = D, = I, 
the identity matrix. Hence we have 

where 
I BT 

AcB I. I 1 
We now eliminate u1 from the second set of equations, using u1 = -BTU, + fl from 
the first. Thus we have to solve the reduced system 

(I-BB=)u,=f,-BBf,. (2.1) 
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We observe that ,, BB“ ~/cc < ;, B in= /, BT ~ a s< I, and that I - BBT is an M matrix. 
(Actually, it is quite easy to see that this matrix corresponds to a nine-point difference 
operator, as indicated by the circles in Fig. 1, the variables being eliminated in the 
indicated order l-l 5.) Hence there exist numerically stable incomplete factorizations 
of this matrix (see, for example, Axelsson [2], Meijerink and van der Vorst [3] and 
Gustafsson [4]). Let LLT be such an incomplete factorization. 

3. THE PRECONDITIONED CONJUGATE GRADIENT METHOD 

We now solve (2. I) by iteration, using a preconditioned conjugate gradient method. 
At each step of this we solve the two systems of equations corresponding to the 
triangular matrices L and LT. 

Since the modified incomplete factorization MIC methods described in Gustafsson 
[4] are asymptotically fastest, we will use them in this report. These factorizations 
are realized by moving (and adding to) the diagonal of LT entries that appear in 
undesired positions and thus cause fill-in, during the LLT decomposition of a matrix A. 
For diagonally dominant matrices these factorization algorithms are stable, i.e., the 
entries of diag(L) are positive. The positions where fill-in is actually allowed can be 
chosen in advance. We use the notation MIC(d) to indicate that L contains d more 
nonzero diagonals than the lower part of A. It is shown in [4] that if LL* is derived by a 
MIC factorization of a diagonally dominant matrix A corresponding to a second- 
order differential equation problem, the eigenvalues of (LLT)-l A are bounded below 
by O(1) and above by O(h-l). In the present application I - BBT is a diagonally 
dominant M-matrix. Hence the eigenvalues hi of (LLT)-l (I - BBT) satisfy O(1) < 
Xi < O(P), h ---f 0, i = 1, 2,..., mn/2. Hence the spectral condition number K is 
@h-l), h + 0, and the conjugate gradient method, preconditioned by LLT, will 
converge in O(h-1/2) iterations. Different preconditioned conjugate gradient methods 
are described in, for example, Axelsson [5, 61 and Gustafsson [4]. The following one- 
step version was used (for the solution of a system Au = f): 

Let u” be arbitrary, calculate r” = Au0 -f, solve LLTyo = r”, and calculate yu = 
(yo, r”), d” = -y”, d1° = Ado, go = (r”, y”). Then for I = 0, I,..., calculate X, = 
u,W, dl% z&i1 = u1 + Xld7, Y~+~I = Y! $ h,dl’, solve LLTyt-bl =: rril and calculate 
YzTl = (+‘-l, +), uzel = (rl:~l, yz I), /$A 1 --= uz+Juz , d’-,l = -y2’l + /3,+,d’, dl’ l = 
A&'-l. 

Here (.,.) is the usual inner product (s, v) = x’y. As stopping criterion we have 
used yz = l 2yo and as incomplete factorization LLT of A = I - BBT the MlC(2) 
algorithm was used. As initial approximation u” we have chosen U” = (LLT)-l-/l 
Apparently, since LLT resembles A, this is always a good choice. 

We observe that the matrix A has only to be formed in order to calculate the in- 
complete factorization matrix LLT, but multiplications Adfil can be performed from 
A=I-BBT. 

We also observe that the vector yz may be used for storage of Ad’. Hence, apart 
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from the matrices B and L, only four vectors of size mn/2 have to be stored, and the 
total requirement of central storage is 7.5 mn. 

The number of multiplications (and additions) per iteration is 14 mn. We remark 
that the MIC(2) method, applied directly on the natural (rowwise or columnwise) 
ordered mesh, demands 21 mn operations. The factorization work is 13 mn and 6 mn 
operations, respectively. 

As follows from, for example, Axelsson [5], an upper bound for the number of 
iterations needed to decrease the relative residual error to li rz I!/~1 r” ~’ = E is 

where rl is the residual vector at the lth iterative step and K is the spectral condition 
number of L-=AL-l. This number is about the same for the original matrix, cor- 
responding to a natural ordering, and for I - BBT, both preconditioned by some 
MlC factorization algorithm. The number of iterations I that were actually needed 
in a computer run for E = 1O-6 is given in Table I for different values of m and n. The 
corresponding result for the usual ordering is given in Table II. A model Poisson 
problem was used. More general problems show the same behavior; see [4]. 

The total solution work per unknown with E = 1O-3 grows as in Fig. 2, where also 
the corresponding numbers for the natural ordering and for a complete factorization 

TABLE 1 

The Number of Iterations for the MICCG(2) Method 
on the Reduced System, E = IO-@ on the Reduced System, E = lO-B 

______-____ ______-____ 
8 8 16 16 32 32 10 10 20 20 40 40 

-__ -__ .- .- 
8 8 10 10 

TABLE II 

The Number of Iterations for the MICCG(2) Method 
on the Usual Ordered System, E = 1Om6 
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Work/unknown 
Zebra(E=l) 

Zebra(E=Z) 

NO(E=l) 
Zebra(E=4) 
NO(E=Z) 

NO(E=4) 
RB(E=I) 

RB(E=Z) 

RB(E=4) 

I I " 
a 16 

t r 
32 40 

FIG. 2. The total work per unknown for the MICCG(2) method on the reduced red-black 
ordered system (RB), the MICCG(2) method on the natural ordered system (NO), and the Zebra 
algorithm described in [l] for different values of n and E = n/m, E = 1O-5 (in the iterative methods). 

of a reduced system (a one-way dissection method, called Zebra method), as described 
in McDonald and Trimble [l], are given. In practice a relative accuracy of three 
decimal digits often suffices. Hence, although the latter method in general gives full 
precision the comparison may be adequate. In any case, the number of iterations grows 
only linearly with the number of correct digits. 

4. CONCLUSION 

We conclude that the red-black ordering may be advantageous also in connection 
with incomplete factorizations. Furthermore, since for the complete factorization the 
factorization work is O(nm3) (actually +nm3 - im3)a and the work in our method is 
O(nrnl.3, m -+ co, if the ratio m/n is constant, it is also superior to that method. Only 
for small systems and for very small bandwidths is the complete factorization slightly 
faster. The accuracy depends on the relative accuracy, E in the iterative method. For 
instance, for n = 40, m = 10, and E = 10-3, the number of operations per unknown 
in our method is only 63 multiplications and additions. 
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We finally remark that our method, incomplete factorization and a conjugate 
gradient method, as well as the Zebra method and similar methods are very favorable 
also on diagonally dominant nonsymmetric matrices, like those arising from (modi- 
fied) upwind approximations of diffusion-convective equations, for arbitrary large 
Peclet numbers (see Axelsson and Gustafsson [7]). 
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